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Abstract

As a contribution to the George B. Moody PhysioNet
Challenge 2022 we (team listNto urHeart) propose a
phonocardiogram classifier. Based on the assumption that
these recordings bear similarity to music, we borrow meth-
ods from the field of computational music analysis. In
contrast to end-to-end machine learning approaches, we
propose a carefully-crafted processing pipeline for auto-
matically detecting single heartbeats in phonocardiogram
recordings which are then classified by a bi-directional
long short-term memory network. Our approach has the
advantage of not requiring manual annotations during
training, therefore alleviating the lack of annotated train-
ing data. In murmur detection, we reached a weighted ac-
curacy of 0.68 in validation, 0.668 in test (rank: 25/40)
and 0.64 ± 0.08 during training. In predicting patient
outcome, we reached 10, 362 in validation, 13, 866 in test
(rank: 27/39) and 11, 386 ± 2, 108 during training. The
results indicate that borrowing algorithms from computa-
tional music analysis could bear the potential to address
challenges in phonocardiogram classification successfully.

1. Introduction

Congenital heart disease (CHD) and valvular heart dis-
ease (VHD) can be identified early by abnormal heart
sounds. Early diagnosis can avoid medical complications
due to disease progression and the financial burden of more
expensive treatments. As part of the George B. Moody
PhysioNet Challenge 2022 [1], we (team listNto urHeart)
tackle the problem of algorithmic prescreening of phono-
cardiograms (PCG) to detect CHD and VHD in the CirCor
DigiScope dataset [2].

Physiological heart cycles show two distinct sounds:
The S1 sound resulting from the atrioventricular valves
closing and S2 sound resulting from the semilunar valves

closing either together or the aortic valve closing before
the pulmonary valve. Especially the S2 sound results in a
complex morphology, showing one or two peaks depend-
ing on the patients physiology. In pathologic heart cycles,
additional peaks, i.e. heart sounds, can appear. The au-
tomatic segmentation of the different sounds has a poor
performance which makes annotated segmentation for ev-
ery patient by doctors the gold standard [3]. However, this
annotation is time-consuming and expensive.

To overcome the limited data availability for training
machine learning (ML) models, we propose an fully au-
tomatic PCG segmentation method by borrowing tech-
niques from the field of computational music analysis. In
contrast to end-to-end ML approaches in which the ML
model learns all the steps between input and final output
[4], we propose a carefully-adjusted processing pipeline
before feeding the signals to a long short-term memory
(LSTM) network (see Fig. 1). We hypothesize that heart
sounds, measured over a sequence of multiple cardiac cy-
cles, show a base rhythm in the same sense as musical
tracks do. Moreover, similar to different instruments, PCG
data are composed of multiple sound sources besides the
heart sounds, e.g. breathing of the subject or speaking of
other persons in the room.

2. Material and Methods

The challenge provides a training data set consisting of
3, 163 recordings measured at different locations from 942
patients. During training, we select the recordings labeled
as best audible location for each patient. For patients with-
out this label, the longest recording was selected for train-
ing. Regarding predictions on the hidden test and valida-
tion sets, we did not take location into account.

In order to enable others to reproduce our results, we
provide complete source code online1.

1https://github.com/PhilipGemke/listNto urHeart Entry3.2.git
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Figure 1: Schema of processing pipeline

2.1. Preprocessing

Although PCG is a proven diagnostic tool, a typical is-
sue in the analysis is a critically low signal-to-noise ra-
tio (SNR), especially in uncontrolled environments [5].
Therefore our preprocessing strategy includes filtering
recordings to reduce noise (sec. 2.1.1), splitting the signal
into different segments containing single heartbeats and se-
lecting only the 10 segments with highest SNR (sec. 2.1.2).

This approach is based on the assumption that murmurs
and their corresponding pathologies are detectable in every
heartbeat of a PCG, since the CirCor DigiScope dataset fo-
cuses on systolic (S1) murmurs (96.7%). Only in diastolic
(S2) pathologies, the inspiratory split affects the quality of
heart sounds which might lead to the pathology not being
detectable in a single segment [2].

2.1.1. Normalization

PCG recordings were normalized using volume-based
and percussion-based approaches depicted in Fig. 2.
Volume-based normalization: We hypothesized that
physiological differences such as the size of chest wall,
the amount of fat and muscle tissue, or the size of the heart

and vessels, determining the resonance space of the heart
sound, lead to different amplitudes in the PCG recordings.
Furthermore, issues during measurement, such as chang-
ing pressure on the stethoscope influence the volume and
frequency of the recording directly.

Therefore, we normalized all recordings to −20dBFS
(decibel relative to full scale) using the method
apply gain() provided by the open-source library py-
dub2. We estimated a threshold based on the root mean
square RMS =

√
A2/2 = 0.707 ∗ A. Here, A represents

the amplitude of a sine wave fitted to the PCG signal as this
approach is more robust to outliers than direct amplitude
estimation [6]. The RMS value is then used to increase
the amplitude of all samples which are below −20dBFS
to this level and to decrease all other samples.

Percussion-based normalization: We hypothesized
that PCG data are composed of multiple sound sources
similar to different instruments in an audio track, there-
fore we used percussion filters which are commonly used
in sound-engineering to separate vocals from drums.

Hence, we used an audio filter called harmonic
percussive separation provided by the open
source library librosa3 to separate harmonic and percus-
sive parts. Subsequently, a short-time Fourier trans-
formation was performed using stft() to obtain a
power spectrogram. This was used as an input to
a median-filtering harmonic percussive separation using
decompose() (parameters: sr=4000; hop length=32;
n fft=128; win length=128) followed by istft(), con-
verting the PCG power spectrograms back to time domain.

2.1.2. Segmentation into Heartbeats

After normalization, PCG recordings were processed
by beat.beat track (tightness=128, units=samples,
trim=False) provided by librosa to obtain indices of peaks.
The tightness is an option that allows some irregularity of
detected beats to enable peak detection in recordings with
physiological irregularities such as extra systoles. The in-
dices were used to extract short segments from the whole
recordings by placing windows of 600ms duration on each
index and storing samples covered by the window.

We devised a two-stage procedure to select the segments
representing single heartbeats with highest SNR for a sin-
gle patient. First, single segments with standard deviation
(SD) larger than the mean of all SD values were removed
to exclude segments showing high amplitude noise stem-
ming from crying or talking (see Fig. 3). Second, for
each remaining segment we computed Approximate En-
tropy (ApEn) using antropy library4as a measure of regu-
larity. We expect segments with high SNR to show repeti-

2https://pydub.com/
3https://librosa.org/
4https://pypi.org/project/antropy/
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Figure 2: In the first row a whole PCG recording was processed. In the second row a segment from this recording is shown.
The other rows show segments extracted from different patients. The arrow in the last row points to a heart sound which
was made more pronounced due to the percussion normalization by removing surrounding noise.
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Figure 3: Selection of PCG segments: After volume-normalization (sec. 2.1.1), peaks in the PCG signals resulting from
heart sounds were detected using a bpm-song-classifier (sec. 2.1.2). 600 ms segments were extracted with the 10 most
suitable being selected using a two-stage procedure, neglecting segments with too high ApEn or SD values. The shown
segments stem from a single recording and are sorted ascending w.r.t. ApEn values. A: Segments kept for further analysis
B: Segments excluded based on SD C: Segments excluded based on ApEn value.

tive patterns of signal fluctuations due to physiological ef-
fects while in segments with low SNR random patterns ap-
pear. ApEn has already been applied successfully to audio
signals, e.g. for speech quality measurement [7].

We kept the 10 segments showing the lowest ApEn val-
ues for each recording. In rare cases (≈ 3%) with less
then 10 detected segments, remaining segments were du-
plicated.

2.2. Classification

The 10 extracted audio segments were used for training
of a bi-directional LSTM network. The network was built

using the open source libraries keras5 and tensorflow6

The bi-directional LSTM architecture was chosen for its
ability to remember sequences from both directions. As
both tasks of the challenge (murmur detection and out-
come prediction) have different underlying ground truth,
we designed a separate LSTM model for each. During
testing, for each patient, we took the 10 segments extracted
during preprocessing and predicted murmur and outcome
for every segment. As there are up to 5 different mea-
surement locations for each patient, this results in 10− 50
probabilities per task.To obtain only one probability value

5https://keras.io/
6https://www.tensorflow.org/
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Table 1: Weighted accuracy and cost metric scores (official
Challenge score) for our best entry (team listNto urHeart)

Training Validation Test Ranking

Weighted
accuracy

0.64
0.685 0.668 25/40±0.08

Cost
[$]

11, 386 10,362 13,866 27/39±2, 108

per patient, we averaged the probabilities, resulting in a
mean probability. For the determination of a classification
threshold for both tasks, we used the training data and per-
formed an iterative minima (maxima) search over the costs
(accuracy) in the interval ]0, 1[ in steps of 0.1.

3. Results

Preprocessing and segmentation extraction resulted in
segments containing heartbeats with similar properties in
individual patients. Fig. 2 shows clearly that the normal-
ization adjusted segments to similar amplitude levels. As
can be seen in Fig. 3, segments containing high levels of
noise were removed. Furthermore, the percussion-filter
was able to remove the percussive elements of the heart
sounds (e.g. arrow in Fig. 2).

Tbl. 1 shows the results of the official phase and cross
validation after classification, yielding a 25th place in the
accuracy task.

4. Discussion and Conclusion

In this work, we developed a method for classification of
PCG recordings based on the principle of segmenting the
full recordings into single heartbeats which were then fed
to an LSTM network. The final prediction was made by
averaging the LSTM output for each heartbeat and com-
paring the resulting value to a threshold.

The provided PCG data was recorded in a clinical en-
vironment and thereby suffers from noise from various
sources, resulting in low SNR. This makes it hard to au-
tomatically detect heartbeats in a PCG recording, which is
why many state-of-the-art approaches use annotated heart-
sounds, manually picked by cardiologists [8]. In contrast,
we proposed a method for fully automatic segmentation,
which could help to overcome the lack in databases.

Our methods are based on the idea of interpreting PCG
recordings as multi-instrumental audio tracks. In compu-
tational music analysis the rhythm of a song is calculated,
sounds are decomposed into different components, and
tracks are classified into genres [9]. This corresponds to
the tasks associated with PCG classification. Additionally,
the rhythmic basis of the heartbeat and the signal decom-

position are important features for the heart sound analysis
[10]. The achieved results indicate that borrowing algo-
rithms from computational music analysis could bear the
potential to address challenges in PCG processing success-
fully. Similar approaches were also applied to ECG [11].

In conclusion, our results indicate the potential of a
manually-crafted preprocessing pipeline using audio pro-
cessing techniques with few heuristic parameters for PCG
classification in contrast to end-to-end approaches.
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